首页
大事记
友情链接
留言板
关于
Search
1
无界拷贝文件在线传输系统开始公测
1,089 阅读
2
解决SSH登录卡在"Last login"问题
1,072 阅读
3
宝塔BT面板PHP防CC
1,003 阅读
4
Linux环境安装Dlib——以Centos7为例
503 阅读
5
高考作文论证方法之“广深高铁”
481 阅读
默认分类
新鲜科技
时事热点
学无止境
Python
Arduino
作文素材
C语言
踩坑记录
机器学习
资源分享
站长杂谈
登录
Search
标签搜索
机器学习
Datawhale
C语言
git
python
组队学习
物联网
esp8266
PHP
云顶书院
Linux
LLM
建站
网站
宝塔
开学
清明节
VPS
Arduino
开源硬件
MoyiTech
累计撰写
55
篇文章
累计收到
40
条评论
首页
栏目
默认分类
新鲜科技
时事热点
学无止境
Python
Arduino
作文素材
C语言
踩坑记录
机器学习
资源分享
站长杂谈
页面
大事记
友情链接
留言板
关于
搜索到
55
篇与
的结果
2023-09-26
AI线上部署之ChatGLM
使用趋动云的在线Jupyter Notebook部署模型环境配置很简单,直接使用预置的镜像即可环境:Python 3PyTorch代码 + 注释:# cli_demo.py import os import platform import signal from transformers import AutoTokenizer, AutoModel import readline # 从指定路径加载预训练的tokenizer和model,允许信任远程代码 tokenizer = AutoTokenizer.from_pretrained("/gemini/data-2", trust_remote_code=True) model = AutoModel.from_pretrained("/gemini/data-2", trust_remote_code=True).cuda() # 若要支持多显卡,请使用下面两行代码替换上面一行,并根据实际显卡数量设置num_gpus # from utils import load_model_on_gpus # model = load_model_on_gpus("THUDM/chatglm2-6b", num_gpus=2) model = model.eval() # 获取操作系统信息,以便在不同操作系统上清屏 os_name = platform.system() clear_command = 'cls' if os_name == 'Windows' else 'clear' stop_stream = False # 构建用户提示信息,包括对话历史、清空历史和终止程序的说明 def build_prompt(history): prompt = "欢迎使用 ChatGLM2-6B 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序" for query, response in history: prompt += f"\n\n用户:{query}" prompt += f"\n\nChatGLM2-6B:{response}" return prompt # 处理终止信号的函数 def signal_handler(signal, frame): global stop_stream stop_stream = True # 主函数 def main(): past_key_values, history = None, [] global stop_stream print("欢迎使用 ChatGLM2-6B 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序") while True: query = input("\n用户:") if query.strip() == "stop": # 如果用户输入"stop",退出程序 break if query.strip() == "clear": # 如果用户输入"clear",清空对话历史并清屏 past_key_values, history = None, [] os.system(clear_command) print("欢迎使用 ChatGLM2-6B 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序") continue print("\nChatGLM:", end="") current_length = 0 # 使用模型进行对话生成 for response, history, past_key_values in model.stream_chat(tokenizer, query, history=history, past_key_values=past_key_values, return_past_key_values=True): if stop_stream: # 如果接收到终止信号,停止对话生成 stop_stream = False break else: print(response[current_length:], end="", flush=True) current_length = len(response) print("") if __name__ == "__main__": main() 命令行模式命令:python ChatGLM2-6B/cli_demo.py最终结果:web模式:需要安装streamlitpip install streamlit然后在命令行使用streamlit运行web_demo2.pystreamlit run web_demo2.py --server.port=77使用streamlit可以很方便地实现web界面,无需html、css、js的知识都可以用 https://zhuanlan.zhihu.com/p/448853407
2023年09月26日
169 阅读
0 评论
1 点赞
2023-09-26
循环神经网路 RNN
普通的RNN:小数据集 低算力S=f(winXt+b) St=f(WinXt+WSSt−1+b)变种输入序列,单输出单输入,输出序列输入不随序列变化原始的N to N的RNN要求序列等长,然而我们遇到的大部分问题序列都是不等长的,如机器翻译中,源语言和目标语言的句子往往并没有相同的长度。下面介绍RNN最重要的一个变种:N to M。这种结构又叫Encoder-Decoder模型,也可以称之为Seq2Seq模型。从名字就能看出,这个结构的原理是先编码后解码。左侧的RNN用来编码得到c,拿到c后再用右侧的RNN进行解码。得到c有多种方式:长短期记忆网络 LSTMforget gate 遗忘门f1=sigmoid(w1[St−1xt]+b1)input gate 输入门f2=sigmoid(w2[St−1xt]+b2)∗tanh(w2′[St−1xt]+b2′) ct=f1∗ct−1+f2
2023年09月26日
87 阅读
0 评论
0 点赞
2023-09-23
AI线上部署之猫狗识别
使用趋动云的在线Jupyter Notebook部署模型环境配置很简单,直接使用预置的镜像即可环境:Python 3TensorFlow 2代码 + 注释:import argparse import tensorflow as tf import os parser = argparse.ArgumentParser(description='Process some integers') # 使用argparse创建一个可以解析命令行参数的工具,description为描述信息 parser.add_argument('--mode', default='train', help='train or test') parser.add_argument("--num_epochs", default=5, type=int) # 设置epochs parser.add_argument("--batch_size", default=32, type=int) # 设置batch_seze parser.add_argument("--learning_rate", default=0.001) # 设置learning_rate parser.add_argument("--data_dir", default="/gemini/data-1") parser.add_argument("--train_dir", default="/gemini/output") args = parser.parse_args() # 将解析的结果存储在args中 # 图片的前置处理 def _decode_and_resize(filename, label): image_string = tf.io.read_file(filename) # 从文件中读取 image_decoded = tf.image.decode_jpeg(image_string, channels=3) # 解码jpeg为rgb三通道 image_resized = tf.image.resize(image_decoded, [150, 150]) / 255.0 # 将图片缩放、归一化 return image_resized, label if __name__ == "__main__": train_dir = args.data_dir + "/train" cats = [] dogs = [] for file in os.listdir(train_dir): # 遍历文件夹 if file.startswith("dog"): dogs.append(train_dir + "/" + file) else: cats.append(train_dir + "/" + file) print("dogSize:%d catSize:%d" % (len(cats), len(dogs))) train_cat_filenames = tf.constant(cats[:10000]) # 将文件名列表转化为张量 train_dog_filenames = tf.constant(dogs[:10000]) train_filenames = tf.concat([train_cat_filenames, train_dog_filenames], axis=-1) # axis=-1表示最后一个维度 train_labels = tf.concat([ tf.zeros(train_cat_filenames.shape, dtype=tf.int32), # 猫标为0 tf.ones(train_dog_filenames.shape, dtype=tf.int32) # 狗标为1 ], axis=-1) train_dataset = tf.data.Dataset.from_tensor_slices((train_filenames, train_labels)) # 创建一个dataset train_dataset = train_dataset.map( map_func=_decode_and_resize, num_parallel_calls=tf.data.experimental.AUTOTUNE # 指定为并行调用 ) train_dataset = train_dataset.shuffle(buffer_size=20000) # 打乱 train_dataset = train_dataset.batch(args.batch_size) # 设置batch_size train_dataset = train_dataset.prefetch(tf.data.experimental.AUTOTUNE) # 自动调整并行化程度,使训练时可异步预取数据,减少训练时间 model = tf.keras.Sequential([ # 定义模型网络 tf.keras.layers.Conv2D(32, 3, activation="relu", input_shape=(150, 150, 3)), tf.keras.layers.MaxPool2D(), tf.keras.layers.Conv2D(64, 3, activation="relu"), tf.keras.layers.MaxPool2D(), tf.keras.layers.Conv2D(128, 3, activation="relu"), tf.keras.layers.MaxPool2D(), tf.keras.layers.Conv2D(128, 3, activation="relu"), tf.keras.layers.MaxPool2D(), tf.keras.layers.Flatten(), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(512, activation="relu"), tf.keras.layers.Dense(2, activation="softmax") ]) model.compile( optimizer=tf.keras.optimizers.Adam(learning_rate=args.learning_rate), # 定义优化器为Adam loss=tf.keras.losses.sparse_categorical_crossentropy, # 定义损失函数为交叉熵 metrics=[tf.keras.metrics.sparse_categorical_accuracy] # 定义模型评估指标为稀疏分类准确率 ) model.fit(train_dataset, epochs=args.num_epochs) # 开始训练 model.save(args.train_dir) # 保存模型 # 构建测试数据集 test_cat_filenames = tf.constant(cats[10000:]) test_dog_filenames = tf.constant(dogs[10000:]) test_filenames = tf.concat([test_cat_filenames, test_dog_filenames], axis=-1) test_labels = tf.concat([ tf.zeros(test_cat_filenames.shape, dtype=tf.int32), tf.ones(test_dog_filenames.shape, dtype=tf.int32) ], axis=-1) test_dataset = tf.data.Dataset.from_tensor_slices((test_filenames, test_labels)) test_dataset = test_dataset.map(_decode_and_resize) test_dataset = test_dataset.batch(args.batch_size) sparse_categorical_accuracy = tf.keras.metrics.SparseCategoricalAccuracy() # 稀疏分类指标 for images, label in test_dataset: y_pred = model.predict(images) sparse_categorical_accuracy.update_state(y_true=label, y_pred=y_pred) # 更新准确率指标的状态 print("test accuracy:%f" % sparse_categorical_accuracy.result()) # 输出结果 训练命令:python $GEMINI_RUN/DogsVsCats.py --num_epochs 5 --data_dir $GEMINI_DATA_IN1/DogsVsCats/ --train_dir $GEMINI_DATA_OUT最终结果:学习心得:由于之前接触的都是pytorch,这次第一次接触了TensorFlow,学习到了很多TensorFlow的api和这次demo简洁优美的代码风格
2023年09月23日
111 阅读
0 评论
1 点赞
2023-08-25
Jupyter Notebook添加删除查看kernel
查看 Jupyter notebook kerneljupyter kernelspec list添加kernel# 首先进入道相应环境中 python -m pip install ipykernel python -m ipykernel install --user --name=kernelname --display-name showname # name为创建的文件夹名,showname为jupyter notebook展示的内核名删除jupyter kerneljupyter kernelspec remove kernelname
2023年08月25日
123 阅读
0 评论
0 点赞
2023-08-18
【Datawhale夏令营第三期】用户新增预测挑战赛
前言又又又参加了Datawhale的AI夏令营第二期的机器学习赛道~,没错这次还是机器学习(外加运营助教)baseline:https://aistudio.baidu.com/aistudio/projectdetail/6618108赛事任务基于提供的样本构建模型,预测用户的新增情况数据说明udmap: 以dict形式给出,需要自定义函数解析common_ts: 事件发生时间,可使用df.dt进行解析x1-x8: 某种特征,但不清楚含义,可通过后续画图分析进行处理target: 预测目标0或1二分类评估指标还是f1,F1 score解释: https://www.9998k.cn/archives/169.htmlF1 scoreF1 score = 2 * (precision * recall) / (precision + recall)precision and recall第一次看的时候还不太懂precision和recall的含义,也总结一下首先定义以下几个概念:TP(True Positive):真阳性TN (True Negative) : 真阴性FP(False Positive):假阳性FN(False Negative):假阴性precision = TP / (TP + FP)recall = TP / (TP + FN)accuracy = (TP + TN) / (TP + TN + FP + FN)分析baseline分析跑出来是0.62+使用了决策树模型进行训练对udmap特征进行了提取计算了eid的freq和mean通过df.dt提取了hour信息特征提取除去baseline的特征外,又借鉴了锂电池那次的baseline,提取了如下特征:dayofweekweekofyeardayofyearis_weekend调整后的分数为:0.75train_data['common_ts_hour'] = train_data['common_ts'].dt.hour test_data['common_ts_hour'] = test_data['common_ts'].dt.hour train_data['common_ts_minute'] = train_data['common_ts'].dt.minute + train_data['common_ts_hour'] * 60 test_data['common_ts_minute'] = test_data['common_ts'].dt.minute + test_data['common_ts_hour'] * 60 train_data['dayofweek'] = train_data['common_ts'].dt.dayofweek test_data['dayofweek'] = test_data['common_ts'].dt.dayofweek train_data["weekofyear"] = train_data["common_ts"].dt.isocalendar().week.astype(int) test_data["weekofyear"] = test_data["common_ts"].dt.isocalendar().week.astype(int) train_data["dayofyear"] = train_data["common_ts"].dt.dayofyear test_data["dayofyear"] = test_data["common_ts"].dt.dayofyear train_data["day"] = train_data["common_ts"].dt.day test_data["day"] = test_data["common_ts"].dt.day train_data['is_weekend'] = train_data['dayofweek'] // 6 test_data['is_weekend'] = test_data['dayofweek'] // 6x1-x8特征提取train_data['x1_freq'] = train_data['x1'].map(train_data['x1'].value_counts()) test_data['x1_freq'] = test_data['x1'].map(train_data['x1'].value_counts()) test_data['x1_freq'].fillna(test_data['x1_freq'].mode()[0], inplace=True) train_data['x1_mean'] = train_data['x1'].map(train_data.groupby('x1')['target'].mean()) test_data['x1_mean'] = test_data['x1'].map(train_data.groupby('x1')['target'].mean()) test_data['x1_mean'].fillna(test_data['x1_mean'].mode()[0], inplace=True) train_data['x2_freq'] = train_data['x2'].map(train_data['x2'].value_counts()) test_data['x2_freq'] = test_data['x2'].map(train_data['x2'].value_counts()) test_data['x2_freq'].fillna(test_data['x2_freq'].mode()[0], inplace=True) train_data['x2_mean'] = train_data['x2'].map(train_data.groupby('x2')['target'].mean()) test_data['x2_mean'] = test_data['x2'].map(train_data.groupby('x2')['target'].mean()) test_data['x2_mean'].fillna(test_data['x2_mean'].mode()[0], inplace=True) train_data['x3_freq'] = train_data['x3'].map(train_data['x3'].value_counts()) test_data['x3_freq'] = test_data['x3'].map(train_data['x3'].value_counts()) test_data['x3_freq'].fillna(test_data['x3_freq'].mode()[0], inplace=True) train_data['x4_freq'] = train_data['x4'].map(train_data['x4'].value_counts()) test_data['x4_freq'] = test_data['x4'].map(train_data['x4'].value_counts()) test_data['x4_freq'].fillna(test_data['x4_freq'].mode()[0], inplace=True) train_data['x6_freq'] = train_data['x6'].map(train_data['x6'].value_counts()) test_data['x6_freq'] = test_data['x6'].map(train_data['x6'].value_counts()) test_data['x6_freq'].fillna(test_data['x6_freq'].mode()[0], inplace=True) train_data['x6_mean'] = train_data['x6'].map(train_data.groupby('x6')['target'].mean()) test_data['x6_mean'] = test_data['x6'].map(train_data.groupby('x6')['target'].mean()) test_data['x6_mean'].fillna(test_data['x6_mean'].mode()[0], inplace=True) train_data['x7_freq'] = train_data['x7'].map(train_data['x7'].value_counts()) test_data['x7_freq'] = test_data['x7'].map(train_data['x7'].value_counts()) test_data['x7_freq'].fillna(test_data['x7_freq'].mode()[0], inplace=True) train_data['x7_mean'] = train_data['x7'].map(train_data.groupby('x7')['target'].mean()) test_data['x7_mean'] = test_data['x7'].map(train_data.groupby('x7')['target'].mean()) test_data['x7_mean'].fillna(test_data['x7_mean'].mode()[0], inplace=True) train_data['x8_freq'] = train_data['x8'].map(train_data['x8'].value_counts()) test_data['x8_freq'] = test_data['x8'].map(train_data['x8'].value_counts()) test_data['x8_freq'].fillna(test_data['x8_freq'].mode()[0], inplace=True) train_data['x8_mean'] = train_data['x8'].map(train_data.groupby('x8')['target'].mean()) test_data['x8_mean'] = test_data['x8'].map(train_data.groupby('x8')['target'].mean()) test_data['x8_mean'].fillna(test_data['x8_mean'].mode()[0], inplace=True)实测使用众数填充会比0填充好一点实测分数 0.76398无脑大招:AutoGluon直接上代码:import pandas as pd import numpy as np train_data = pd.read_csv('用户新增预测挑战赛公开数据/train.csv') test_data = pd.read_csv('用户新增预测挑战赛公开数据/test.csv') #autogluon from autogluon.tabular import TabularDataset, TabularPredictor clf = TabularPredictor(label='target') clf.fit( TabularDataset(train_data.drop(['uuid'], axis=1)), ) print("预测的正确率为:",clf.evaluate( TabularDataset(train_data.drop(['uuid'], axis=1)), ) ) pd.DataFrame({ 'uuid': test_data['uuid'], 'target': clf.predict(test_data.drop(['uuid'], axis=1)) }).to_csv('submit.csv', index=None)AutoGluon分数:0.79868使用x1-x8识别用户特征参考自Ivan大佬import pandas as pd import numpy as np train_data = pd.read_csv('用户新增预测挑战赛公开数据/train.csv') test_data = pd.read_csv('用户新增预测挑战赛公开数据/test.csv') user_df = train_data.groupby(by=['x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8'])['target'].mean().reset_index( name='user_prob') from sklearn.tree import DecisionTreeClassifier for i in range(user_df.shape[0]): x1 = user_df.iloc[i, 0] x2 = user_df.iloc[i, 1] x3 = user_df.iloc[i, 2] x4 = user_df.iloc[i, 3] x5 = user_df.iloc[i, 4] x6 = user_df.iloc[i, 5] x7 = user_df.iloc[i, 6] x8 = user_df.iloc[i, 7] sub_train = train_data.loc[ (train_data['x1'] == x1) & (train_data['x2'] == x2) & (train_data['x3'] == x3) & (train_data['x4'] == x4) & (train_data['x5'] == x5) & (train_data['x6'] == x6) & (train_data['x7'] == x7) & (train_data['x8'] == x8) ] sub_test = test_data.loc[ (test_data['x1'] == x1) & (test_data['x2'] == x2) & (test_data['x3'] == x3) & (test_data['x4'] == x4) & (test_data['x5'] == x5) & (test_data['x6'] == x6) & (test_data['x7'] == x7) & (test_data['x8'] == x8) ] # print(sub_train.columns) clf = DecisionTreeClassifier() clf.fit( sub_train.loc[:, ['eid', 'common_ts']], sub_train['target'] ) try: test_data.loc[ (test_data['x1'] == x1) & (test_data['x2'] == x2) & (test_data['x3'] == x3) & (test_data['x4'] == x4) & (test_data['x5'] == x5) & (test_data['x6'] == x6) & (test_data['x7'] == x7) & (test_data['x8'] == x8), ['target'] ] = clf.predict( test_data.loc[ (test_data['x1'] == x1) & (test_data['x2'] == x2) & (test_data['x3'] == x3) & (test_data['x4'] == x4) & (test_data['x5'] == x5) & (test_data['x6'] == x6) & (test_data['x7'] == x7) & (test_data['x8'] == x8), ['eid', 'common_ts']] ) except: pass test_data.fillna(0, inplace=True) test_data['target'] = test_data.target.astype(int) test_data[['uuid','target']].to_csv('submit_2.csv', index=None)实测分数:0.831最后 修改代码,把fillna替换为如下代码from sklearn.tree import DecisionTreeClassifier clf = DecisionTreeClassifier() clf.fit( train_data.drop(['udmap', 'common_ts', 'uuid', 'target', 'common_ts_hour'], axis=1), train_data['target'] ) test_data.loc[pd.isna(test_data['target']),'target'] = \ clf.predict( test_data.loc[ pd.isna(test_data['target']), test_data.drop(['udmap', 'common_ts', 'uuid', 'target', 'common_ts_hour'], axis=1).columns] )最终分数: 0.8321
2023年08月18日
170 阅读
0 评论
1 点赞
1
2
3
...
11