首页
大事记
友情链接
留言板
关于
Search
1
无界拷贝文件在线传输系统开始公测
1,088 阅读
2
解决SSH登录卡在"Last login"问题
1,072 阅读
3
宝塔BT面板PHP防CC
1,003 阅读
4
Linux环境安装Dlib——以Centos7为例
503 阅读
5
高考作文论证方法之“广深高铁”
479 阅读
默认分类
新鲜科技
时事热点
学无止境
Python
Arduino
作文素材
C语言
踩坑记录
机器学习
资源分享
站长杂谈
登录
Search
标签搜索
机器学习
Datawhale
C语言
git
python
组队学习
物联网
esp8266
PHP
云顶书院
Linux
LLM
建站
网站
宝塔
开学
清明节
VPS
Arduino
开源硬件
MoyiTech
累计撰写
55
篇文章
累计收到
40
条评论
首页
栏目
默认分类
新鲜科技
时事热点
学无止境
Python
Arduino
作文素材
C语言
踩坑记录
机器学习
资源分享
站长杂谈
页面
大事记
友情链接
留言板
关于
搜索到
6
篇与
的结果
2023-07-24
【Datawhale】机器学习赛道——锂离子电池生产参数调控及生产温度预测挑战赛
前言Datawhale组织了一次人工智能相关的线上夏令营活动一共分为三个赛道:机器学习、自然语言处理、计算机视觉由于我还是个菜菜,就选择了机器学习赛道来练习一下基础赛事任务初赛提供了电炉17个温区的实际生产数据,分别是电炉上部17组加热棒设定温度T1-1~T1-17,电炉下部17组加热棒设定温度T2-1~T2-17,底部17组进气口的设定进气流量V1-V17,选手需要根据提供的数据样本构建模型,预测电炉上下部空间17个测温点的测量温度值。数据说明1)进气流量2)加热棒上部温度设定值3)加热棒下部温度设定值4)上部空间测量温度5)下部空间测量温度每项数据各17个分析赛题给出的是根据前三项数据预测后两项数据,但在给出的数据集中(可能)还有一项数据为时间信息(日期+时间),不确定是否会对结果产生实质性的作用Baseline分析baseline主要运用了sklearn和lightgbm机器学习模型进行数据处理和训练,相比于是之前使用的pytorch,更加适合机器学习数据挖掘的任务,也就是本赛题,pytorch多用于深度学习网络的构建和训练。point使用submit["序号"] = test_dataset["序号"]对最后提交的数据及进行序号对齐使用sklearn中的train_test_split模块进行训练集和验证集的分割定义了time_feature函数用于时间数据的处理,而我之前没有考虑到时间因素便直接给Drop掉了上分技巧首先要选用合适的模型,其次要合理调整超参。我在调整超参时主要是通过观察训练集和验证集的loss来查看模型的拟合程度,进而对超参进行调整。代码在没看到Baseline之前,也尝试过使用多层网络来做,但是出现了过拟合现象,最好成绩才跑到了7.9分(预估MAE为4.9)贴一下之前的代码:#!/usr/bin/env python # coding: utf-8 # In[25]: import pandas as pd import torch import os # In[26]: pd.read_csv('train.csv') # In[27]: config = { 'lr': 6e-3, 'batch_size': 256, 'epoch': 180, 'device': 'cuda' if torch.cuda.is_available() else 'cpu', 'res': ['上部温度'+str(i+1) for i in range(17)] + ['下部温度'+str(i+1) for i in range(17)], 'ignore':['序号', '时间'], 'cate_cols': [], 'num_cols': ['上部温度设定'+str(i+1) for i in range(17)] + ['下部温度设定'+str(i+1) for i in range(17)] + ['流量'+str(i+1) for i in range(17)], 'dataset_path': './', 'weight_decay': 0.01 } # In[28]: raw_data = pd.read_csv(os.path.join(config['dataset_path'], 'train.csv')) test_data = pd.read_csv(os.path.join(config['dataset_path'], 'test.csv')) raw_data = pd.concat([raw_data, test_data]) raw_data # In[28]: # In[29]: for i in raw_data.columns: print(i,"--->\t",len(raw_data[i].unique())) # In[30]: def oneHotEncode(df, colNames): for col in colNames: dummies = pd.get_dummies(df[col], prefix=col) df = pd.concat([df, dummies],axis=1) df.drop([col], axis=1, inplace=True) return df # In[31]: raw_data # In[32]: # 处理离散数据 for col in config['cate_cols']: raw_data[col] = raw_data[col].fillna('-1') raw_data = oneHotEncode(raw_data, config['cate_cols']) # 处理连续数据 for col in config['num_cols']: raw_data[col] = raw_data[col].fillna(0) # raw_data[col] = (raw_data[col]-raw_data[col].min()) / (raw_data[col].max()-raw_data[col].min()) # In[33]: for i in raw_data.columns: print(i,"--->\t",len(raw_data[i].unique())) # In[34]: raw_data # In[35]: raw_data.drop(config['ignore'], axis=1, inplace=True) # In[36]: all_data = raw_data.astype('float32') # In[37]: all_data # In[ ]: # 暂存处理后的test数据集 test_data = all_data[pd.isna(all_data['下部温度1'])] test_data.to_csv('./one_hot_test.csv') # In[ ]: # In[ ]: train_data = all_data[pd.notna(all_data['下部温度1'])] # In[ ]: # 打乱 train_data = train_data.sample(frac=1) train_data.shape # In[ ]: # 分离目标 train_target = train_data[config['res']] train_data.drop(config['res'], axis=1, inplace=True) train_data.shape # In[ ]: train_target.to_csv('./train_target.csv') # In[ ]: # 分离出验证集,用于观察拟合情况 validation_data = train_data[:800] train_data = train_data[800:] validation_target = train_target[:800] train_target = train_target[800:] validation_data.shape, train_data.shape, validation_target.shape, train_target.shape # In[ ]: from torch import nn # 定义Residual Block class ResidualBlock(nn.Module): def __init__(self, in_features, out_features, dropout_rate=0.5): super(ResidualBlock, self).__init__() self.linear1 = nn.Linear(in_features, out_features) self.dropout = nn.Dropout(dropout_rate) self.linear2 = nn.Linear(out_features, out_features) def forward(self, x): identity = x out = nn.relu(self.linear1(x)) out = self.dropout(out) out = self.linear2(out) out += identity out = nn.relu(out) return out # In[ ]: from torch import nn # 定义网络结构 class Network(nn.Module): def __init__(self, in_dim, hidden_1, hidden_2, hidden_3, weight_decay=0.01): super().__init__() self.layers = nn.Sequential( nn.Linear(in_dim, hidden_1), # # nn.Dropout(0.49), nn.LeakyReLU(), nn.BatchNorm1d(hidden_1), # nn.Linear(hidden_1, hidden_2), # nn.Dropout(0.2), # nn.LeakyReLU(), # nn.BatchNorm1d(hidden_2), # nn.Linear(hidden_2, hidden_3), # nn.Dropout(0.2), # nn.LeakyReLU(), # nn.BatchNorm1d(hidden_3), nn.Linear(hidden_1, 34) ) # 将权重衰减系数作为类的属性 self.weight_decay = weight_decay def forward(self, x): y = self.layers(x) return y # In[ ]: train_data.shape[1] # In[ ]: # 定义网络 model = Network(train_data.shape[1], 256, 128, 64) model.to(config['device']) try: model.load_state_dict(torch.load('model.pth', map_location=config['device'])) except Exception: # 使用Xavier初始化权重 for line in model.layers: if type(line) == nn.Linear: print(line) nn.init.kaiming_uniform_(line.weight) # In[ ]: train_data.columns # In[ ]: import torch # 将数据转化为tensor,并移动到cpu或cuda上 train_features = torch.tensor(train_data.values, dtype=torch.float32, device=config['device']) train_num = train_features.shape[0] train_labels = torch.tensor(train_target.values, dtype=torch.float32, device=config['device']) validation_features = torch.tensor(validation_data.values, dtype=torch.float32, device=config['device']) validation_num = validation_features.shape[0] validation_labels = torch.tensor(validation_target.values, dtype=torch.float32, device=config['device']) # del train_data, train_target, validation_data, validation_target, raw_data, all_data, test_data # 特征长度 train_features[1].shape # In[ ]: # train_features # In[ ]: # config['lr'] = 3e-3 # In[ ]: from torch import optim # 在定义优化器时,传入网络中的weight_decay参数 def create_optimizer(model, learning_rate, weight_decay): return optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay) # 定义损失函数和优化器 # criterion = nn.MSELoss() criterion = torch.nn.L1Loss() criterion.to(config['device']) optimizer = optim.Adam(model.parameters(), lr=config['lr']) loss_fn = torch.nn.L1Loss() # In[ ]: def val(model, feature, label): model.eval() pred = model(feature) pred = pred.squeeze() res = loss_fn(pred, label).item() return res # In[ ]: mse_list = [] # In[ ]: # 在训练过程中添加L2正则化项 def train(model, train_features, train_labels, optimizer, criterion, weight_decay): model.train() for i in range(0, train_num, config['batch_size']): end = i + config['batch_size'] if i + config['batch_size'] > train_num - 1: end = train_num - 1 mini_batch = train_features[i: end] mini_batch_label = train_labels[i: end] pred = model(mini_batch) pred = pred.squeeze() loss = criterion(pred, mini_batch_label) # 添加L2正则化项 # l2_reg = torch.tensor(0., device=config['device']) # for param in model.parameters(): # l2_reg += torch.norm(param, p=2) # loss += weight_decay * l2_reg if torch.isnan(loss): break optimizer.zero_grad() loss.backward() optimizer.step() # In[ ]: # config['epoch'] = 4096 for epoch in range(config['epoch']): print(f'Epoch[{epoch + 1}/{config["epoch"]}]') model.eval() train_mse = val(model, train_features[:config['batch_size']], train_labels[:config['batch_size']]) validation_mse = val(model, validation_features, validation_labels) mse_list.append((train_mse, validation_mse)) print(f"epoch:{epoch + 1} Train_MSE: {train_mse} Validation_MSE: {validation_mse}") model.train() train(model, train_features, train_labels, optimizer, criterion, weight_decay=config['weight_decay']) torch.save(model.state_dict(), 'model.pth') # In[ ]: import matplotlib.pyplot as plt import numpy as np y1, y2 = zip(*mse_list) x = np.arange(0, len(y1)) plt.plot(x, y1, label='train') plt.plot(x, y2, label='valid') plt.xlabel("epoch") plt.ylabel("Loss: MSE") plt.legend() plt.show()
2023年07月24日
223 阅读
0 评论
1 点赞
1
2